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Abstract. The thermodynamics of the infinite-range Ising spin glass ipin interactions in

the presence of an external magnetic fielid investigated analytically using the replica method.

We give emphasis to the analysis of the transition between the replica symmetric and the one-step
replica symmetry breaking regimes. In particular, we derive analytical conditions for the onset of
the continuous transition, as well as for the location of the tricritical point at which the transition
between those two regimes becomes discontinuous.

1. Introduction

Although the thermodynamics of the Ising spin glass with infinite-range interactions, the so-
called Sherrington—Kirkpatrick (SK) model [1], has been thoroughly investigated in the last
two decades [2, 3], comparatively little attention has been given to the analysis of a natural
generalization of the SK model, namely, thespin interaction Ising spin glass. This model is
described by the Hamiltonian [4, 5]

Hp(S) == > i, Si, —h Y S; 1)

1<i1<i2...<i,,<N

whereS; = £1,i = 1,..., N are Ising spins andl is the external magnetic field. Here the
coupling strengths are statistically independent random variables with a Gaussian distribution
NP1 Jisig..i)PNP~1
P(Jisiy..i) = i @)
p! p!

Besides the acknowledged importance of #hapin interaction Ising spin glass in the
framework of the traditional statistical mechanics of disordered systems (it yields the celebrated
random energy model in the limit — oo [4] and the SK model fop = 2), it also plays a
significant role in the study of adaptive walks in rugged fithess landscapes within the research
programme championed by Kauffman [6-8].

The thermodynamics of the SK model & 2) as well as that of the random energy model
(p — o0) are now well understood. In the Parisi replica framework the local order parameter
is an x n matrix g.;, which in the limitn — 0 is characterized by a functian(x) where
0 < x < 1. Theinverse function(¢) has a clear physical interpretation: it is the probability
that two equilibrium states have an overlap smaller thd8, 3]. In particular, forp = 2
andh = 0 the order parameter functigr(x) tends to zero continuously as the temperature
approaches the critical vali&® = 1 at which the transition between the spin glass and the
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high-temperature (disordered) phases takes place [2,3p Feroo andh = 0, the system has

a critical temperatur@ = 1/(2+/In 2) at which it freezes completely into the ground state:
q(x) is a step function with values zero and one, and with a break painta?’/ 7> [4,5].

These results are not affected qualitatively by the presence of a non-zero magnetic field. More
pointedly, for the SK model the critical temperature decreases monotonically with increasing
h while the transition remains continuous, in the senseghatis continuous at the transition

line [9, 10]. In contrast, for the random energy model the critical temperature increases with
increasing: while the discontinuity in the step functigr(x) decreases with increasithgand
vanishes in the limit — oo [4,5].

The situation for finitey > 2 is considerably more complicated and so the thermodynamics
ofthep-spin model has beeninvestigatedAos 0only[11,12]. Inthis casethereisatransition
from the disordered phase to a partially frozen phase characterized by a step fytiedion
with values zero angh, < 1. As the temperature is lowered further, a second transition occurs,
leading to a phase described by a continuous order parameter function [11,12]. However, there
is evidence that the presence of a non-zero magnetic field decreases the size of the discontinuity
of the order parameter(x) leading, eventually, to a continuous phase transition. In fact, a
recent analysis of the typical overlgetween pairs of metastable states with energy density
€ indicates thag is a discontinuous function effor p > 2, and that the size of the jump in
g increases withp and decreases with vanishing at finite values of the magnetic field [13].
Moreover, a similar effect has already been observed in the thermodynamic analysis of the
sphericalp-spin interaction spin-glass model [14]. It is interesting to note that the spin-glass
phase of this continuous spin model is described exactly by a step order parameter function,
i.e., the one-step replica symmetry breaking (LRSB) is the most general solution within the
Parisi scheme of replica symmetry breaking [14].

In this paper we use the replica method to study the thermodynamics of theplsipig
interaction spin-glass model in the presence of the magnetidfialde focus on the effects of
h on the transition between the replica symmetric (RS) and the 1RSB regimes. In particular,
we show that forp > 2 the discontinuous transition reported in previous analyses [11, 12]
turns into a continuous one férlarger than a certain valug-. Moreover, we derive analytical
conditions to determine the location of the continuous transition line, as well as that of the
tricritical point at which the transition becomes discontinuous.

The remainder of this paper is organized as follows. In section 2 we discuss the replica
formulation and present the formal equation for the average free-energy density, which is then
rewritten using the RS and the 1RSB ansatze. These results are discussed very briefly since
their derivations are given in detail in Gardner’s paper [11]. We also present the solution of
the 1RSB saddle-point equations in the limit of laggeghus extending the series expansions
results for non-zera. In section 3 we derive analytical conditions for locating the continuous
transition and the tricritical point between the RS and 1RSB regimes, and present the phase
diagrams in the plan€r’, ). Finally, some concluding remarks are presented in section 4.

2. The replica formulation
We are interested in the evaluation of the average free-energy d¢nséfined by
. 1
-Bf = A![Poo N«In Z) 3)
where

Z = Trs exp[-BH,(S)] (4)
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is the partition function ang is the inverse temperature. Hefe..)) stands for the average

over the coupling strengths, andsTelenotes the summation over thé &tates of the system.

As usual, the evaluation of the quenched average in equation (3) can be effectuated through
the replica method: using the identity

{InZ) = lim E In{Z"™) (5)
n—-0n

we first calculatg(Z")) for integern, i.e. Z" = []
n = 0[2,3]. The final result is simply [11]

n
a=1

Z., and then analytically continue to

. 1 1
—Bf = lim extr[—G(qab, )\ab)i| + 5B ©6)
n—0 n 4
where
G((/Iabv )\ah) = %ﬂz Z qc‘fb — ,82 Z )\-ahqah +1In Tr{Sa} eXp(,BZ Z AfahSaSb + IBh Z Sa> .
a<b a<b a<b a
(7

The extremum in equation (6) is taken over the physical order parameter

N

%b=«1§:wﬂﬂ$n» a<b (8)
N i=1

which measures the overlap between two different equilibrium stttesnd S?, and over

its corresponding Lagrangian multiplieg,. Here,(...)r stands for a thermal average. To

proceed further, next we consider two standard ansatze for the structure of the saddle-point

parameters.

2.1. RS solution

In this case we assume that the saddle-point parameters are symmetric under permutations
of the replica indices, i.eq,, = g andi,, = A. With this prescription the evaluation of
equation (6) is straightforward, resulting in the RS free-energy density

“Bhe =40 - @)+ 380" + [ Dzim2coshpE.] O
where
By =zvVa+h (10)
and
Dz = g2 (11)
2
is the Gaussian measure. The saddle-point equadipnéqg = 0 andaf,;/9Ar = 0 yield
P p
A==q’ 12
24 12)
and
q=f Dz tantf[BE; (2)] (13)

respectively. The RS solution is locally stable wherever the Almeida—Thouless condition [9],
which in this case is given by [11]

1- B2(p - 1)3 / Dz secH[BE,(2)] > 0 (14)

—00
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is satisfied. In fact, since equation (13) has either one or three positive solutions, this stability
condition is very useful to single out the physical one. In particularzfer O the only stable
solution isqg = 0.

2.2. Replica symmetry broken solution

Following Parisi's scheme [3], we carry out the first step of replica symmetry breaking by
dividing then replicas intan/m groups ofmm replicas and setting,, = g1, A, = A1 if a and

b belong to the same group ang, = go, 2.» = Ao Otherwise. The physical meaning of the
saddle-point parameters is the following

1 N
6]0=<<N DS% <S§’>T>> a<bh (15)

-3 507)

i=1

andm = 1—Y", P2. Hencey is the overlap between a pair of different equilibrium stages,
is the overlap of an equilibrium state with itsedf (> go), andm is the probability of finding
two copies of the system in two different staté (s just the Gibbs probability measure for
the stateS*). We note that in the limit — 0, the parameter is constrained to the range
0 < m < 1. Using this prescription, equation (6) becomes

1
—Bfrsv = —ZﬂZ[ZM(l — q1+mqy) — 2mgoro — 1 +(1 — m)qy +mgqf

1 [e.¢] oo
+In2+— / Dzo In/ Dz cosH' BE a7
m J_s _

o0

where

2 = z21v/A1 — Ao+ 20v/Ao + . (18)

The saddle-point equationg,,/dq; = 0 yield

)Lk = gq[_l (19)
for k = 0, 1. The saddle-point parametegs g1 andm are given by the equations

go = / Dzo (tanhp E)? (20)

a1= [ Do tant? g, (21)
and
1 ) » » 1 [} [e%e] 1 [} _
—B(p—D(q; —qp) =—— Dzo In Dz; cosi’' BE + — Dzo (IncoshBE),
4 m2 —00 —00 m J_co

(22)

where we have introduced the notation
oo —~
[, Dz1(...)cosH' BE
/-, Dz1 cosl' BE

Itis clear from these equations that the RS saddle-pgiet g1 = ¢ is a solution for any value
of m. In general, however, the 1RSB equations will admit a different solution. In particular, in

()= (23)
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the limit p — oo the solution isjo = tanrf(8mh), g1 = 1 andm = B,/ whereg, = 1/ T
is the solution of the equation [5]

1,2
B2 =In2coshB.h — B:htanhB.h. (24)

Below7 >, the entropy vanishes andsticks to its maximum value, namely = 1, signalling

the existence of a frozen phase in accordance with the physical meaningeritioned before.

It is instructive to consider the finitg corrections to the infinitgr solution by expanding the
1RSB equations around that solution. Thus, extending the results of Gardner [11] for non-zero
h, we find

e—ﬂzmzp/ll
go = tantf(Bmh) | 1 + 2%, sechpmh) ——— (25)
1 2
NEYZ
m%‘m efﬁzmzp/4
qg1=1- sechBmh) ————— (26)
L=m NEVE
and
%/32 = iz[ln 2 cosh(pmh) — pmh tanh(Bmh)] + A,, (27)
m
where
A = —/ L pB2E,, sechpmh)e Fmr/4 (28)
if B%2m? < 8|Intanh(Bmh)| and
a2 Bmh
Ay =8 ptanr?f’wmh)—smh(z s (29)

otherwise. Here,

1 & /m 1
5m Z_E;(i)zz'—m
= \/% [ : dz [2 coshimz) — 2" cosH' ()] (30)

where we have used the extended definition of the binomial coefficient te:rgd].

At this stage we can already realize the existence of two solutions of a quite different
nature, signalling then the nontrivial role played by the magnetic field in the thermodynamics
of the p-spin model.

A quite interesting property of the 1RSB solution, which can easily be verified numerically,
is thatgo = 0 forh = 0 andp > 2, thus indicating that the equilibrium states are completely
uncorrelated. Moreover, this result has greatly facilitated both the numerical and analytical
analyses of the model, since the integrals aein equations (20)—(22) can be carried out
trivially in that case [11,12]. However, as explicitly shown by equation (25) the non-zero
magnetic field induces correlations between different equilibrium states sgtisato longer
zero in this case.

For p = 3, we present in figures 1-3 the temperature dependence of the RS and 1RSB
saddle-point parameters far= 0, 0.5 and 1, respectively. As mentioned before, ioe= 0
we findg = go = 0. The size of the jump ig; decreases with increasikgand disappears
altogether forh > h(f) ~ 0.57. Of particular interest is the temperature dependence of
the saddle-point parameter: at the discontinuous transition it reaches its maximal value,
namely,m = 1, while at the continuous transition it assumes a certain value m. < 1,
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Figure 1. 1RSB saddle-point parametens(full curve) andg; (short-broken curve) as a function
of the temperatur@ for p = 3 andh = 0. In this caseo = ¢ = 0. The discontinuous transition
occurs atl” ~ 0.65.
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Figure 2. 1RSB saddle-point parametens(full curve), go (long-broken curve)y; (short-broken
curve) as a function of the temperatufefor p = 3 andz = 0.5. The chain curve is the RS

saddle-point parametgr The discontinuous transition occurs7at: 0.74.

which depends ol and p. As expected, the behaviour pattern depicted in figure 3 is very
similar to that found in the analysis of the magnetic properties of the SK model [10], as the
transition is continuous in that model. We note that simgglays no role in the RS solution,

the curve form must end at the transition lines.

The location of the transition lines as well as the characterization of the critical values of
the saddle-point parameters are discussed in detail in the next section.
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Figure 3. The same as figure 2 but far= 1. The continuous transition occursZat~ 0.66, at
whichm ~ 0.87.

3. Transition lines

As indicated in the figures presented before, there are two qualitatively different types of
transition between the RS and the 1RSB regimes which we will discuss separately in the
following.

3.1. Continuous transition line

The location of the continuous transition between the RS and the 1RSB solution is determined
by solving the 1RSB equations in the limit of smail — ¢go. More pointedly, subtracting
equation (20) from (21) and keeping terms up to the ofgler- go)? yields

248 Bo(qo)

g — 31

BT B~ Do Balgom) .
where

)\‘ o0

Bo(qo) =1— B%(p — 1)q—2 f Dz secH[BEo(2)] (32)
and
Ba(qo,m) = [p — 2+48%(p — Dro(3 — 2m)] f Dz sect[BEo(2)]

—2B%(p — Dro(8 — 5m) / Dz secK[BEo(2)]. (33)
Here

E0(z) = zy/Ao+h (34)

with Ag given by equation (19). We note that baBy and B, are negative quantities in the
1RSB regime. Since at the continuous transitipr> go — ¢, whereg is the RS saddle-point
(13), the transition line is given by the condition

Bo(q) =0 (35)
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which, as expected, coincides with the RS stability line given by equation (14). To specify the
value ofm at the critical line, denoted by, we expand equation (22) for smajl— go (in this

case we must keep terms up to the ordgr— ¢o)°) and then subtract it from equation (20).
Using the condition (35) together witly — ¢ yields

_ BZ(C], 1)

1—m.= 36
" Ba(q) (36)
where
Ba(q) = 12(p — 2) / Dz secR[BE,(z)] taniP[B E,(2)]
+28%(p — D)1 / Dz secti[8E, ()] (37)

with E; andx given by equations (10) and (12), respectively. Equation (36) holds provided
thatm, < 1 and so the continuous transition line must end at a tricritical point, whose location
is obtained by solving

Bg(q, 1) = O (38)

and equation (35) simultaneously. As usual, the denominator in equation (31) vanishes at the
tricritical point.

3.2. Discontinuous transition line

The location of the discontinuous transition line is determined by equating the free energies of
the RS and 1RSB solutions, given by equations (9) and (17), respectively. This task is greatly
facilitated in this case by noting that settimg= 1 in equation (20) yieldgy = ¢. Moreover,

since form = 1 equation (17) becomes independenjofandiy) one hasf,,,(m = 1) = f;,.

Thus, for fixed: the temperature at which the discontinuous transition takes place is obtained
by solving the 1RSB saddle-point equations witk= 1 for g1, go = ¢, andT = T..

3.3. Analysis of the results

The phase diagrams in the pla(g, #) are presented in figures 4—6 fpr= 2, 3 and 10,
respectively. The full curves are the RS stability condition, equation (14), whose upper branch
coincides with the continuous transition line, equation (35). The discontinuous transition lines
(chain curves) join the continuous ones at the tricritical points (full circles). We also present
the lines at which the entropy of the RS solution vanishes (short-broken curves), which for
h = 0 intersect the temperature axisfat= 1/(2v/1n 2) ~ 0.60, whatever the value of > 2.
We note that forp — oo the condition for the vanishing of the RS entropy yields exactly
the discontinuous transition line for the random energy model, equation (24). The agreement
between these lines is already very good fo= 10 andh not too near,, as illustrated in
figure 6.

Since our results are valid for non-integer, though physically meaningless, vajpés af
as well, in figure 7 we present the value of the saddle-point parametgrthe continuous
transition line, given by equation (36), for several valuep ofAs expected, fop > 2 we
find m. = 1 at the tricritical points. We mention that, despite the numerous studies of the SK
model, we are not aware of any calculation of the 1RSB saddle-point parametesr the
Almeida—Thouless stability line. In figures 8 and 9 we present the valu&sawid/ at the
tricritical point, respectively, as functions of the real variapleFor p — 2 we findh, — 0
andT, — 1, while for largep we find thath, increases like/pIn p, T; like «/p/In p and
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Figure 4. The phase diagram in the pla¢® #) for p = 2. The RS saddle-pointis locally unstable
inside the region delimited by the full curve, which coincides with the continuous transition line
between the RS and the 1RSB regimes. The short-dashed curve delimits the region inside which
the RS entropy is negative.

038

Figure 5. The same as figure 4 but fpr= 3. The RS stability line coincides with the continuous
transition line in the branch above the tricritical point (full circle), locatedjat 0.74 and

h, ~ 0.57. The chain curve is the discontinuous transition line. The convention is the same as for
figure 4.

1—g¢, goesto zero like A(p./In p). These results indicate that the phase diagrams in the plane
(T, h) display the two types of transitions except in the extreme case® andp — oc.
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Figure 6. The same as figure 5 but fgr = 10. The tricritical point (full circle) is located at
T, ~ 1.01 andh, ~ 3.07.
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Figure 7. The saddle-point parameterat the continuous transition line for (from bottom to top
atT =0.5)p=2,201,21,10and 3.

4. Conclusion

Some comments regarding the validity of the 1RSB solution are in order. The stability
analysis of that solution carried out fér = 0 indicates that it becomes unstable for low
temperatures [11]. A seemingly simpler approach to check the physical soundness of the
1RSB solution is to numerically evaluate its entropy. This procedure, however, has proved
very elusive: since the entropy becomes negative when it is of ordiér the numerical
precision required to determine the temperaflifeat which it vanishes is exceedingly large.
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Figure 8. The temperature at the tricritical poifit as a function ofp > 2. Only integer values of
p have a physical meaning.

3.0 T T T T T T T

25 B

20 B

10 - b

0.0 1 1 1 1 1 1 1
6

Figure 9. The magnetic field at the tricritical point as a function ofp > 2. Only integer values
of p have a physical meaning.

For instance, foh = 0 we find7” = 0.10, 0087 (0.19) and 0.034 (0.18) far= 2, 3 and 5,
respectively. The numbers between parentheses are the numerical estimates of [12]. As our
numerical results are in good agreement with that of [16]fcee 2, and are also consistent
with the trend of decreasiriy” with increasingp, we think they are the correct ones. Already
for p > 5, however, we have failed to obtain reliable estimatesrfar Since the precision
problem becomes much worse for non-zéralue to the numerical evaluation of the double
integrals, we refrain from presenting the estimategfoin that case.

Although for finite p the 1RSB solution certainly does not correctly describe the low-
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temperature phase of tipespin Ising spin glass, it probably yields the correct solution near the
transition line delimiting the RS and the replica symmetry breaking regimes. Infact, according
to Gardner [11], considering further steps of replica symmetry breaking within Parisi’s scheme
will resultin a newcontinuougransition between the 1RSB regime and a more complex regime,
described by a continuous order parameter function. In this sense, we think that our results
regarding the transition lines between the RS and the 1RSB regimes are not mere artifacts of
the replica method but indeed describe genuine features of the thermodynamics of the infinite
rangep-spin Ising spin glass in a magnetic field.
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